Heungjoo Shin, Ph. D.

EDUCATION

Ph.D. Mechanical Engineering, 2006, Georgia Institute of Technology, Atlanta, USA

Dissertation: Fabrication of Atomic Force Microscope Probes Integrated with Electrodes

for Micro

Four-Point Probe and SECM-AFM

Advisor: Professor Peter J. Hesketh

M.S. Mechanical Design & Production Engineering, 2000, Seoul National University, Korea

Thesis: Analysis of Tappet Rotation of Direct Acting Type OHC Valve Train System

B.S. Mechanicla Design & Production Engineering, 1998, Seoul National University, Korea

PROFESSIONAL EXPERIENCES

School Head	School of Mechanical, Aerospace & Nuclear	Mar 2016 – Feb 2018
	Engineering	
	Ulsan National Institute of Science and Technology	
Dormitory Director	Ulsan National Institute of Science and Technology	Mar 2009 – Feb 2014
Associate Professor	School of Mechanical, Aerospace & Nuclear Engineering	Mar 2014 - present
	Ulsan National Institute of Science and Technology	
Assistant Professor	School of Mechanical & Nuclear Engineering Ulsan National Institute of Science and Technology	Jan 2009 – Feb 2014
Post-doctoral Research	Schoolo of Chemistry & Biochemistry	Mar 2006 – Dec 2008
Fellow	Georgia Institute of Technology, Atlanta, USA	

RESEARCH INTERESTS

Carbon-MEMS: Unconventional micro/nanofabrication technology facilitating micor/nano carbon structure patterning

- Highly sensitive gas sensors based on suspended hybrid nanowires
- Biosensors and immunoassays based on carbon nanostructures (Interdigitated electrodes; Stacked electrode set)
- Multifunctional atomic force microscopy for detecting or monitoring multiple bio-molecules inside live cells and surface properties
- Molecular diagnostic devices based on mixed-scale micro-/nanofluidic devices